Li-Wei Yu
Research Fellow
Office:Room 806, Shiing-Shen Building
Email:yulw@nankai.edu.cn
Education
2014.09 - 2017.12 Ph.D CIM, Nankai University
2016.09 - 2017.09 Visitor Department of Mathematics, UCSB
2011.09 - 2014.06 M.Sc. CIM, Nankai University
2007.09 - 2011.06 B.S. School of Physics, Nankai University
Employment
2024.01 - Research Fellow, CIM, Nankai University
2022.07 - 2023.12 Associate Research Fellow, CIM, Nankai University
2020.06 - 2022.06 PostDoc, IIIS, Tsinghua University
2018.01 - 2019.11 PostDoc, CIM, Nankai University
Research Interest
> Quantum Machine Learning & Artificial Intelligence
> Yang-Baxter Equation and Associated Mathematical Physics
> Topological Quantum Computation
Publications
21. Li-Wei Yu*, Weikang Li, Qi Ye, Zhide Lu, Zizhao Han, Dong-Ling Deng*, Expressibility-induced Concentration of Quantum Neural Tangent Kernels, Rep. Prog. Phys. (2024)
20. Li-Wei Yu#, Shunyao Zhang#, Pei-Xin Shen, Dong-Ling Deng, Unsupervised Learning of Interacting Topological Phases from Experimental Observables, accepted, Fund. Res. 4, 1086 (2024). # : Equal contribution.
19. Shibo Xu, et.al., Non-Abelian braiding of Fibonacci anyons with a superconducting processor, Nat. Phys. 20, 1469 (2024)
18. Su-Qi Zhang, Jian-Song Hong, Yuan Xue, Xun-Jiang Luo, Li-Wei Yu, Xiong-Jun Liu∗, and Xin Liu∗, Ancilla-free scheme of deterministic topological quantum gates for Majorana qubits, Phys. Rev. B 109, 165302 (2024)
17. Shibo Xu, et.al., Digital simulation of non-Abelian anyons with 68 programmable superconducting qubits, Chin. Phys. Lett. 40 (6), 060301 (2023).
16. Zidu Liu, Qi Ye, Li-Wei Yu, Lu-Ming Duan, Dong-Ling Deng, Theory on variational high- dimensional tensor networks, preprint, arXiv: 2303.17452 (2023).
15. 孙正之∗, 于立伟∗, 邓东灵∗, 量子人工智能简介, 中国计算机学会通讯,19 卷,4 期, 10-16 页 (2023).
14. Zidu Liu#, Li-Wei Yu#, Lu-Ming Duan, Dong-Ling Deng, The Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning, Phys. Rev. Lett. 129, 270501 (2022). # : Equal contribution.
13. Yefei Yu#, Li-Wei Yu#, Wengang Zhang#, Xiaolong Ouyang, Yanqing Liu, Dong-Ling Deng, Lu-Ming Duan, Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins, npj Quantum Information, accepted (2022). # : Equal contribution.
12. Li-Wei Yu, Dong-Ling Deng, Unsupervised Learning of Non-Hermitian Topological Phases, Phys. Rev. Lett. 126, 240402 (2021).
11. Li-Wei Yu, Mo-Lin Ge, l1-norm in Three-Qubit Quantum Entanglement Constrained by Yang- Baxter Equation, Quantum Inf. Proc. 19, 76 (2020).
10. Li-Wei Yu, Mo-Lin Ge, New Type of Solutions of Yang-Baxter Equations, Quantum Entanglement and Related Physical Models, Journal of Physics: Conference Series 1194 (1), 012117 (2019).
09. Yingkai Liu, Yifei Liu, Li-Wei Yu*, Happer Model with “Puzzling” Degeneracy in Periodic Magnetic Field, preprint, arXiv: 1908.04726 (2019). * : Corresponding author.
08. Li-Wei Yu, Local Unitary Representation of Braids and N-Qubit Entanglements, Quantum Inf. Proc. 17, 44 (2018).
07. Li-Wei Yu, Mo-Lin Ge, L1-Norm and Entanglement in Screening out Braiding from Yang-Baxter Equation Associated with Z3 Parafermion, Phys. Lett. A 381, 958 (2017).
06. Li-Wei Yu, Kang Xue, Mo-Lin Ge, Yang-Baxter Matrices Associated with Quantum Information Based on the Topological Basis, Int. J. Mod. Phys. B 30, 1630013 (2016).
05. Li-Wei Yu, Mo-Lin Ge, Z3 Parafermionic Chain Emerging from Yang-Baxter Equation, Sci. Rep. 6, 21497 (2016).
04. Li-Wei Yu, Mo-Lin Ge, More About the Doubling Degeneracy Operators Associated with Majorana Fermions and Yang-Baxter Equation, Sci. Rep. 5, 8102(2015).
03. Li-Wei Yu, Qing Zhao, Mo-Lin Ge, Factorized Three-body S-matrix Restrained by the Yang- Baxter Equation and Quantum Entanglements, Ann. Phys. 348, 106(2014).
02. Mo-Lin Ge, Li-Wei Yu, Kang Xue, Qing Zhao, Yang-Baxter Equation, Majorana Fermions and Three Body Entangling States, Int. J. Mod. Phys. B 28, 1450089(2014).
01. Mo-Lin Ge, Li-Wei Yu, Kang Xue, Qing Zhao, Solutions of the Yang-Baxter Equation Associated with a Topological Basis and Applications in Quantum Information, Theor. Math. Phys. 181, 1145(2014).